New Electron Acceptors of Condensed-Thiophene TCNQ Type

Koji YUI, Hideki ISHIDA, Yoshio ASO, Tetsuo OTSUBO, and Fumio OGURA*

Department of Applied Chemistry, Faculty of Engineering,

Hiroshima University, Saijo, Higashi-Hiroshima 724

Two conjugated homologues of thiophene-TCNQ, i.e., 2,5-bis(dicyanomethylene)-2,5-dihydrothieno[3,2-b]thiophene and 2,6-bis(dicyanomethylene)-2,6-dihydrodithieno[3,2-b:2',3'-d]thiophene have been prepared as potential acceptors. They form charge-transfer complexes with TTF or TTT as well as complex sodium or tetrabutyl-ammonium salts, some of which are highly conducting.

11,11,12,12-Tetracyanonaphtho-2,6-quinodimethane (TNAP), an extended conjugated homologue of 7,7,8,8-tetracyanoquinodimethane (TCNQ), has a slightly stronger electron affinity, a higher polarizability, and a smaller on-site Coulomb repulsion than TCNQ itself.¹⁾ These features make it attractive in the design of organic metals. Actually it is capable of forming metallic complexes with tetrathiafulvalene (TTF)²⁾ and hexamethylenetetraselenafulvalene (HMTSF).³⁾ 2,5-Bis(dicyanomethylene)-2,5-dihydrothiophene (thiophene-TCNQ) is a thiophene analogue of TCNQ,⁴⁾ which has been, however, attracted little attention as an electron acceptor owing to its weak electron affinity.⁵⁾ Our recent interest in search of new acceptors has directed towards an extension of thiophene-TCNQ to a

2340 Chemistry Letters, 1987

condensed system. 2,5-Bis(dicyanomethylene)-2,5-dihydrothieno[3,2-b]thiophene (1) and 2,6-bis(dicyanomethylene)-2,6-dihydrodithieno[3,2-b:2',3'-d]thiophene (2) are especially interesting as potential acceptors which might behave like TNAP. We now wish to report their syntheses and complexation.

Gronowitz and Uppström found a unique reaction to afford thiophene-TCNQ. A similar method was successfully applied to the syntheses of 1 and 2. Thus, 2,5-dibromothieno[3,2-b]thiophene (3)6) was treated with excessive tetracyanoethylene oxide in 1,3-dibromopropane under reflux for 2 h, followed by silica gel column chromatography with dichloromethane and then recrystallization from acetonitrile, giving 1 as reddish brown needles in 36% yield, mp 300 °C, $v_{C=N}$ 2223 cm⁻¹. A similar treatment of 2,6-dibromodithieno[3,2-b:2',3'-d]thiophene (4)7) with tetracyanoethylene oxide in 1,2-dibromoethane under reflux for 1.5 h gave 2 as deep violet fine crystals in 39% yield, mp 300 °C, $v_{C=N}$ 2219 cm⁻¹.8)

In cyclic voltammetry, condensed-thiophene TCNQs 1 and 2 show two redox waves corresponding to two one-electron reductions. Both first half-wave reduction potentials (1: +0.058 V; 2: +0.048 V) are nearly comparable to that of thiophene-TCNQ (+0.068 V).9) On the other hand, the second ones (1: -0.355 V; 2: -0.288 V) increase with the extended conjugation, being significantly higher than that of thiophene-TCNQ (-0.544 V). This indicates an effective reduction of on-site Coulomb repulsion in the diamion states of condensed-thiophene TCNQs as expected.

Table '	1.	Complexation	of	1	and	2	

Complex	Stoichiometry ^a) Appearance	D.P.	$\frac{v_{CN}}{cm^{-1}}$	Conductivityb) S·cm ⁻¹
1. TTF	1:1	black needles ^{C)}	157	2199	13
2 • TTF	1:1	deep green powder ^{c)}	184	2198	2.3
1 • TTT	1:1	Green powder ^d)	228	2216	ca. 10 ⁻⁸
2. TTT	1:1	black powder ^d)	256	2172	3.0
1.•Na	10:7	black needles ^{C)}	>300	2204	3.1×10 ⁻³
2•Na	e)	dark violet powder ^{c)}	>300	2180	5.3×10 ⁻¹
1. Bu ₄ N	3:1	black powder ^{c)}	279	2170	6.3×10^{-4}
2∙Bu ₄ N	5:1	dark violet powder ^{c)}	273	2183	1.9×10 ⁻¹

a) Estimated on the basis of C, H, N elemental analyses. b) Measured on compressed pellets with a four probe method at RT. c) From acetonitrile. d) From chlorobenzene. e) Not determinable by C, H, N elemental analysis: C, 44.13; H, 0.76; N, 14.27%.

$$\begin{bmatrix} S & & S \\ S & & S \end{bmatrix}$$
TTF
TTT

Thiophene-TCNQ forms a molecular complex with TTF, which is nearly insulating. However, it can not complex tetrathiotetracene (TTT) as another typical donor. In contrast, both 1 and 2 are capable of forming 1:1 complexes with either donor. As summarized in Table 1, all complexes except for 1. TTT are highly conducting. They are characterized by some charge-transfer, as indicated by considerable lower wavenumber shifts of their CN stretching vibrations on complexation. On the other hand, the nonconducting complexes such as thiophene-TCNQ. TTF and 1. TTT show no such shift. As also shown in Table 1, 1 and 2 can react with sodium iodide or tetrabutylammonium iodide to give the corresponding complex salts, which are well conducting.

These results clearly indicate that $\frac{1}{2}$ and $\frac{2}{2}$ of an extended conjugated type, though their electron affinities are as weak as thiophene-TCNQ, are promising acceptors for organic metals. Further investigation is now in progress.

2342 Chemistry Letters, 1987

This work was partially supported by a Grant-in-Aid of Scientific Research No. 62550635 from the Ministry of Education, Science and Culture, Japan and Mazda Foundation's Research Grant.

Reference

- J. Diekmann, W. R. Hertler, and R. E. Benson, J. Org. Chem., <u>28</u>, 2719 (1963);
 D. J. Sandman and A. F. Garito, ibid., <u>39</u>, 1165 (1974).
- P. A. Berger, D. J. Dahm, G. R. Johnson, M. G. Miles, and J. D. Wilson, Phys. Rev. B, 12, 4085 (1975).
- 3) K. Bechgaad, C. S. Jacobsen, and N. H. Andersen, Solid State Commun., $\underline{25}$, 875 (1978).
- 4) S. Gronowitz and B. Uppström, Acta Chem. Scand., B28, 981 (1974).
- 5) M. L. Kaplan, R. C. Haddon, F. B. Bramwell, F. Wudl, J. H. Marshall, D. O. Cowan, and S. Gronowitz, J. Phys. Chem., 84, 427 (1980).
- 6) A. Bugge, Acta Chem. Scand., 23, 2704 (1969).
- 7) G. F. Pedulli, M. Tiecco, M. Guerra, G. Martelli, and P. Zanirato, J. Chem. Soc., Perkin Trans. 2, 1978, 212.
- 8) New compounds $\frac{1}{\sim}$ and $\frac{2}{\sim}$ were characterized by elemental and spectroscopic analyses.
- 9) Cyclic voltammetry was carried out at 100 mV/s scan rate in dichloromethane solution containing 0.1 mol dm^{-3} tetrabutylammonium perchlorate as supporting electrolyte using a Ag/AgCl reference electrode and platinum working and counter electrodes.
- 10) J. S. Chappell, A. N. Bloch, W. A. Bryden, M. Maxfield, T. O. Poehler, and D.O. Cowan, J. Am. Chem. Soc., 103, 2442 (1981).

(Received September 11, 1987)